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Abstract

Buoyancy-induced flow regimes are investigated numerically for the basic case of a horizontal cylinder centred into a long co-axial
square-sectioned cavity. In the frame of the 2D assumption, the threshold for the occurrence of time-dependent behaviour is explored.
Stable symmetric and non-symmetric steady-state solutions, as well as unsteady regimes are observed, depending on the Rayleigh num-
ber, Ra, and the aspect ratio of the cavity, d. Four d-values are considered (d = 0.2, 0.4, 0.6, and 0.8). Heat transfer results are correlated
by a single equation covering the full subcritical region.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction and scope

Buoyancy-induced flows play a central role in a number
of practical applications, including environmental thermal
control, nuclear design, solar heating, and the cooling of
electronic devices. More generally, almost all technologies
involving passive heat transfer as the main source of ther-
mal dissipation rely upon natural convection effects.

Natural convection from isolated sources has been
investigated for years, and heat transfer correlations for
most basic geometries can be retrieved from heat transfer
handbooks [1–3]. Natural convection in enclosures has also
been the subject of intensive research efforts, and its funda-
mentals are now summarized in monographs and review
works [4–7]. In such a context, major problems are the pre-
diction of the flow regimes and patterns, and the effect of
confinement on heat transfer performances. This, in turn,
implies the reliability of heat transfer correlations as
derived for isolated sources.
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2007.05.007

* Corresponding author. Tel.: +39 059 2056148; fax: +39 059 2056126.
E-mail address: barozzi.giovanni@unimore.it (G.S. Barozzi).
In this paper, 2D numerical predictions are presented
for the case of a circular source centred into a square cav-
ity. The isolated horizontal cylinder constitutes the basic
reference for the geometry under consideration. That fun-
damental case is well established in the literature, starting
from McAdams’ pioneering work [8], up to the most com-
plete heat transfer correlations by Churchill and Chu [9]
and Morgan [10], covering both laminar and turbulent
regimes and valid for all Prandtl numbers.

The thermal interaction between a cylindrical source
and a rectangular enclosure was first investigated by Ghad-
dar [11]: a uniformly heated 2D circular source in a rectan-
gular cavity was considered numerically, using a spectral
element method. Flow patterns and heat transfer rates were
predicted for air over a wide range of Ra-values. The case
of an isothermal cylinder in a rectangular cavity was inves-
tigated by Cesini et al. [12] by both experiments and numer-
ical modelling. Results were presented in terms of the local
and averaged Nusselt numbers, for different values of the
cavity aspect ratio.

The work of Moukalled and Acharya [13] is of primary
concern here, since they were the first to bring forth a
numerical analysis of the convective annulus created by
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Nomenclature

a, b constants in Eq. (27)
d cylinder diameter to cavity side ratio
D diameter of the cylindrical source
g modulus of the gravitational acceleration
ĝ gravity unit vector
h dimensionless gap width
hh local heat transfer coefficient
hav average heat transfer coefficient
H gap width
L cavity side length
n exponent in Eq. (23)
Nu Nusselt number
p pressure
P scale pressure
Pr Prandtl number
r radial coordinate
Ra Rayleigh number
t time
T temperature
u velocity vector
U scale velocity
x, y, z Cartesian coordinates
Y, Z dependent and independent variables in Eq. (23)

Greek symbols

a thermal diffusivity
b thermal expansion coefficient

e relative error
h angular coordinate
k thermal conductivity
m kinematic viscosity
n grid spacing
q density
s reference time
u non-dimensional wall heat flux
U oscillation amplitude of the non-dimensional

wall heat flux
x non-dimensional frequency

Subscripts

0 pseudo-diffusive
av average
D diameter
E enclosure
H gap width
L cavity side
S source
h local

Superscripts
* non-dimensional variable
� time-averaged quantity
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an inner circular cylinder and an outer square cylinder.
Numerical simulations were performed for three values
of the ratio between the cylinder radius and the cavity
side, the aspect ratio, and five values of the Rayleigh num-
ber. The finite-volume method adopted involved the use
of structured boundary-fitted curvilinear meshes, to solve
the momentum and energy equations in their steady-state
formulation. Flow patterns and thermal fields in all con-
figurations were presented, alongside with profiles of the
local Nusselt number on both the enclosure walls and
the cylinder surface. An asymptotic correlation for the
averaged Nusselt number was proposed, including the
effect of both parameters. Results in [13] were recently
used by Shu and Zhu [14], and by Peng et al. [15] for
the sake of validation of their numerical procedures. In
the former case a numerical approach based on the differ-
ential quadrature method was used. The technique
allowed accurate solutions to be obtained while adopting
relatively coarse grids. Peng et al. [15] employed a Lattice
Boltzmann method, and estimated its accuracy and
suitability to the simulation of buoyancy-driven flows.
The addition of fresh quantitative data was scarce in that
case.

Steady-state formulations were always adopted in the
above numerical experiments. However, it is well docu-
mented that, above some critical values of the Rayleigh
number, confined buoyant flows may undergo different
types of bifurcations, giving rise to unsteady flow regimes
having deterministic or chaotic features. An interesting
study upon time-dependent buoyant flow induced by an
enclosed thermal source was carried out numerically by
Desrayaud and Lauriat [16]. They investigated very thor-
oughly the dynamical behaviour of the buoyant plume aris-
ing from a horizontal line source in a rectangular cavity.
Deschamps and Desrayaud [17] highlighted the substantial
concordance between results for wires of small diameter
and line heat sources [16]. The issue was later addressed
by Corticelli and Barozzi [18], who also considered the
cases of an enclosed rectangular source and an encapsu-
lated vertical channel [19,20].

In the light of the above literature, it is pointed out here
that the detection of the transition threshold from steady-
state to time-dependent regimes not only is of basic scien-
tific interest, but also has practical significance. The charac-
ter of the flow regime, in turn, is expected to affect heat
transfer, even if the extent of such an influence remains
unpredictable for the time being.

In the present work, the basic case already considered in
[13–15] is revisited and extended according to the following
lines:
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(i) the limits of the long-term steady-flow regimes are
explored using direct numerical simulation for four
values of the aspect ratio;

(ii) the CFD software FLUENT 6.2 is employed for
steady-state flow-field and heat transfer predictions;

(iii) results for the averaged Nusselt number are abridged
in a unique heat transfer correlation for air, covering
the whole subcritical range of the Rayleigh number,
and including the effect of the ratio between the
source diameter and the cavity side.
2. Physical model

The case to be considered is shown in Fig. 1. A horizon-
tal cylinder of diameter D is centred into a cavity of square
cross section. The y-axis of the coordinate system coincides
with the cylinders longitudinal axis, while the z-axis is par-
allel and opposed to the gravitational field. The cavity
extension along y is assumed to prevail over L, the cavity
side length, so that the flow and temperature fields can be
modelled as two-dimensional. The wall temperature of
the cylindrical source is uniform, T = TS; the enclosure
walls are also isothermal, T = TE, with TS > TE. The work-
ing fluid is assumed to be air.

The problem is stated in terms of the incompressible
Navier–Stokes formulation. The Oberbeck–Boussinesq
Fig. 1. Schematic of the problem for d = 0.4; detail of the 166 � 166 grid for D
predictions (lower right quarter).
approximation is enforced [21]. All the fluid properties
are consistently assumed to be constant, apart from density
in the buoyancy term of the z-momentum equation.

The continuity, momentum, and energy equations are
given the following non-dimensional form, where the
non-dimensional variables appear as starred:

r � u� ¼ 0; ð1Þ
o

ot
u� þ u� � ru� ¼ �rp� þ 1ffiffiffiffiffiffi

Gr
p r2u� þ T �ĝ; ð2Þ

oT �

ot�
þ u� � rT � ¼ 1ffiffiffiffiffiffi

Gr
p

Pr
r2T �: ð3Þ

The buoyancy force in Eq. (2) is associated to the grav-
itational unit vector, ĝ, and no source term is included in
the energy equation (3).

The cylinder diameter, D, is used as the scale length. The
scale velocity, U, the leading temperature difference, the
time scale and the reference pressure are respectively
defined:

U ¼ ðgbDDT Þ1=2
; ð4Þ

DT ¼ T S � T E; ð5Þ

s ¼ D
U
; ð6Þ

P ¼ qU 2; ð7Þ
NS (upper right quarter); detail of the grid (2514 elements) for steady-state
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q being the reference density for the Oberbeck–Boussinesq
extrapolation.

The boundary conditions at the source and the enclo-
sure walls respectively are:

T � ¼ 1; u� ¼ 0; ð8Þ
T � ¼ 0; u� ¼ 0: ð9Þ

The Prandtl number, Pr, the Grashof number, GrD, and
the Rayleigh number, RaD, are respectively defined:

Pr ¼ m
a
; ð10Þ

GrD ¼
UD
m

� �2

; ð11Þ

RaD ¼ GrD � Pr: ð12Þ

Under the assumption of constant-property fluid, the
Prandtl number is set as Pr = 0.7.

The cavity side, L, and the minimum gap between the
cylinder and the enclosure walls, H, are alternative scale
lengths for the system under consideration. These are
related:

H ¼ L� D
2

: ð13Þ

The aspect ratio of the system is defined:

d ¼ D
L
: ð14Þ

The gap width to diameter ratio can also be used:

h ¼ H
D
¼ 1� d

2d
: ð15Þ

The local Nusselt number on the cylinder surface, is
defined:

NuD;h ¼
hhD
k
¼ � oT �ðhÞ

or�

� �
r�¼1

2

: ð16Þ

Here, hh designates the local heat transfer coefficient,
being h the angular coordinate in Fig. 1. The average Nus-
selt number on the cylinder surface is defined as:

NuD ¼
havD

k
¼ 1

2p

Z 2p

0

NuD;hdh: ð17Þ

Alternative definitions of the Rayleigh and Nusselt num-
bers are based on L or H. These are related to RaD, and
NuD as follows:

RaL ¼ RaD=d3; ð18Þ
RaH ¼ RaD � h3; ð19Þ
NuL ¼ NuD=d; ð20Þ
NuH ¼ NuD � h: ð21Þ
3. Numerical methods

Two alternative numerical approaches were adopted in
the simulations, both based on control volume discretiza-
tions of Eqs. (1)–(3).

A direct numerical simulation (DNS) technique was
used in the first part of the investigation, to explore the
asymptotic behaviour of the system over a wide range of
Ra-values. The DNS method is based on a finite volume
implementation of a second order projection method, fol-
lowing Gresho [22]. Time-discretizations of the conserva-
tion equations are performed according to a three-level
scheme, which is fully implicit for the diffusive terms, and
explicit Adams–Bashforth for the advective terms. Such a
practice is second-order accurate in time. Besides, the
choice of an implicit scheme for the diffusive terms allows
to remove the stability constraint on the time-step width.
Spatial derivatives are approximated with second order
central differences on staggered, non-uniform Cartesian
grids. The resolution of the discrete momentum and energy
equations at each time-step is made by approximate factor-

ization, while the Poisson problem associated with the pres-
sure–velocity coupling [22], is solved through a fast direct
Poisson solver, based on matrix decomposition. Examples
of the successful application of the technique to Cartesian
geometries were given in [18–20].

The 2D modelling of arbitrarily irregular boundaries on
Cartesian grids is achieved, thanks to the original scheme
presented by Barozzi et al. [23]. The technique involves a
local modification of the computational stencil where
boundary segments intersect the stencil arms.

The steady-state heat transfer predictions were carried
out using the commercial finite-volume-based CFD code
FLUENT (v. 6.2, � Fluent Inc.) in its time-independent
option. A newly implemented third-order scheme for space
discretization of momentum and energy equations was
enforced [24], and the SIMPLE scheme [25] with second-
order space discretizations was adopted to solve the pres-
sure–velocity coupling. The use of the above high order
schemes, combined with body-fitted meshes, is expected
to guarantee high accuracy in the prediction of the local
and averaged Nusselt numbers.

The iterative, point implicit, Gauss–Seidel linear equa-
tion solver implemented in FLUENT was used in conjunc-
tion with an algebraic multigrid (AMG) method, to solve
for the temperature and the velocity components.

4. Development of the work

The geometry under consideration had not been previ-
ously characterized in terms of flow stability ranges. As a
first issue, long-term flow behaviours were explored in
terms of RaD, and d.

Four d-values were chosen, d = 0.2, 0.4, 0.6, and 0.8,
with the first three corresponding to those already investi-
gated in [13–15]. A 10 � 4 element matrix was set in the
(RaD,d) plane, aimed to encompass the first stability



Table 2
Grid sizing for steady-state computations

d Non-dimensional maximum grid spacing n/D No. of elements

0.2 0.0540 5071
0.4 0.0383 2514
0.6 0.0227 2733
0.8 0.0070 9810

D. Angeli et al. / International Journal of Heat and Mass Transfer 51 (2008) 553–565 557
threshold for the four geometries: 10 values of RaD were
selected for each value of d, covering the range of RaD from
102 up to 5 � 106 in a quasi-logarithmic sequence. DNS
computations were performed over these 40 cases, and
the long-term behaviour of the system was determined
for each of them. Each run was initialized with a purely dif-
fusive temperature field, as obtained by a preliminary zero-
velocity simulation for the given RaD-value. In all the cases,
the pressure and the velocity components were also initial-
ized with fields generated numerically for RaD = 10.

The grids for the DNS solver were constructed using
constant spacing n = 0.01D in the central area, including
the cylindrical source, so as to ensure accuracy in the
approximation of the internal boundary. The same crite-
rion was applied in the proximity of the cavity wall; a con-
stant ratio coarsening was used to connect the central and
the peripheral regions. A sample grid (d = 0.4) is shown in
the upper part of Fig. 1.

A grid sensitivity analysis was carried out for the case
d = 0.2, RaD = 104, where the flow regime turned out to
be periodic. Spatial convergence was examined taking as
the reference quantity the average non-dimensional wall
heat flux on the right vertical side of the cavity. This is
defined:

uav ¼ d
Z 1

2d

1
2d

oT �

ox�

����
x�¼ 1

2d

dz�: ð22Þ

To check grid-dependency of unsteady solutions, three
alternative indices were tried. These are: the dimensionless
fundamental frequency of the system, x; the oscillation
amplitude, U; and the time-averaged heat flux over one
oscillation period, �uav. For all quantities, the relative error
e between each discrete solution, and the continuum value
as predicted by Richardson extrapolation [26], was com-
puted; results of the analysis are summarized in Table 1.
The original (212 � 212) grid was halved once and twice
(k = 2), while the maximum time-step size was inversely
restricted.

It is pointed out that even the coarsest grid (53 � 53)
correctly captured the periodic nature of the flow, although
the solution was affected by severe quantitative errors.
From Table 1, the oscillation amplitude, U, emerges as
the most grid-sensitive of the three indices.

The small relative errors produced by the finest grid sup-
port the adoption of over-refined grids of that size, to
ensure a satisfactory accuracy in the prediction of the
asymptotic flows. The final grid sizes used for d = 0.2,
Table 1
Sensitivity analysis for DNS grids

DNS grid d = 0.2 (no. of elements) Relative error e (%)

�uav x U

212 � 212 0.01 0.61 0.45
106 � 106 0.34 1.57 3.44
53 � 53 8.71 4.06 26.49
0.4, 0.6, and 0.8 were 212 � 212, 166 � 166, 144 � 144,
122 � 122 respectively.

The long-term scenarios resulting from the numerical
experiment were used to identify the subcritical ranges,
i.e., the region of long-term steady-state flow conditions,
for each of the four geometries. This formed the basis for
the second part of the work, where the subcritical region
was thoroughly explored.

Since the subcritical range is much more consistently
defined in terms of RaH, rather than RaD, a new matrix
of 22 � 4 points in the (RaH,d) plane was chosen to inves-
tigate the steady-state region. The CFD code FLUENT 6.2
was employed for steady-state predictions.

Special attention was again devoted to the mesh gener-
ation process, in order to produce high precision results
and to achieve a satisfactory grid-independence. A grid
sensitivity analysis was performed for RaH = 2 � 104, the
upper limit for steady-state, and the outermost d-values,
d = 0.2 and d = 0.8. Richardson extrapolation [26] was
again performed, uav being the reference quantity for spa-
tial convergence. The average grid size, n, was chosen so as
to guarantee a relative error on the reference quantity
within 1% for d = 0.2 and d = 0.8. Those results were lin-
early interpolated to derive the appropriate average mesh
size for the intermediate configurations (d = 0.4 and
d = 0.6). The n-values obtained for each geometry were
taken as the maximum cell dimension. A sample mesh
for steady-state predictions is shown in the lower part of
Fig. 1. The values of n and the number of grid elements
used in final steady-state computations are reported in
Table 2.

5. Results and discussion

5.1. Long-term flow regimes and subcritical region

Table 3 gives a qualitative view of the long-term scenar-
ios resulting from DNS computations; different flow
regimes match different greyscales in the table.

A rough distinction is made here between different
steady-flow regimes, according to their thermal and flow
patterns. In particular, the regimes where the temperature
distribution does not deviate appreciably from the purely
conductive one are defined pseudo-diffusive (PD); laminar
symmetric (S) regimes are the ones where the thermal
and flow fields are symmetric with respect to the central
vertical axis (x = 0). Steady laminar non-symmetric (NS)
thermal and flow fields sometimes appear. Time-dependent



Table 3
Characterization of asymptotic flow regimes from DNS computations

PD = Pseudo-Diffusive; S = Steady Symmetric; NS = Steady Non-Sym-
metric; UP = Unsteady Periodic; UC = Unsteady Complex.
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asymptotic flows are in turn designated unsteady periodic
(UP), when a definite fundamental frequency is present in
their power spectrum with or without its harmonics, or
unsteady complex (UC), when more complex features are
encountered.

Results indicate that various transitions occur at differ-
ent RaD-values for different geometries, and, in particular,
higher aspect ratios induce retarded transitions, in terms of
RaD. The geometry is found not only to affect transition,
but also the character of the supercritical flow regimes,
and their stability ranges. This is particularly evident when
comparing results for d = 0.4, and d = 0.6. In the former
case a simple periodic regime is encountered after the first
critical RaD-value, then followed by a more complex flow.
Fig. 2. Flow characterization from DNS on the (RaH,d) plane. PD =
UP = unsteady periodic; UC = unsteady complex.
For d = 0.6, on the contrary, a steady non-symmetric con-
figuration precedes the transition to unsteady flow, and this
is already complex in nature for RaD = 5 � 106.

Overall, the results bear evidence of a progressive shift
of the first supercritical RaD-value for increasing d; for
example, the first transition occurs between 5 � 103 and
104, for d = 0.2, but falls above 5 � 106, for d = 0.8. Such
a wide variability in the transitional regions in terms of
RaD, suggest D might be not the most appropriate length
scale for the problem at hand. For instance, L was pre-
ferred in previous studies [13–15]. The scaling effect of this
quantity is however misleading, since, in fact, the leading
parameter RaL is insensitive to the source diameter. On
the other hand, D is the natural choice for isolated sources,
but does not take into account the entity of confinement.
The minimum gap between the confining walls and the
source, H, is a more significant length: (i) it characterises
regions of potentially maximum temperature gradients;
(ii) the lateral gaps, where no stability constraint exists,
are the initial flow promoters; (iii) the upper gap is a site
of unstable thermal stratification.

The asymptotic flow-predictions for the 40 (RaD,d) cou-
ples were re-scaled in terms of (RaH,d) in Fig. 2. It is
pointed out that regions associated with different long-term
flow regimes become fairly more aligned on the Ra-axis,
throughout the four d-values.

Results in Fig. 2 allow a common threshold for steady-
state regimes to be coarsely defined, and, as a conservative
estimate, the limit below which the asymptotic flow regime
can be assumed to be stable steady-state is RaH ffi 2 � 104,
for d P 0.2.
pseudo-diffusive; S = steady symmetric; NS = steady non-symmetric;
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5.2. Flow features

For all the d-values, with the exception of case d = 0.2, a
purely diffusive thermal field and a very weak double-cell
circulation correspond to the lowest Ra-values in Table 3.
The flow is generated within the lateral gaps and propa-
gates throughout the domain by viscous shear, as docu-
mented by the symmetry of the circulation cells towards
the horizontal midplane. Fluid velocity however remains
too low for the temperature distribution to be affected,
and the thermal field does not deviate from a purely con-
ductive one. At higher Rayleigh numbers, laminar steady-
state convection prevails.

Fig. 3 demonstrates the influence of geometry on the
general flow patterns and the thermal fields at steady-state.
For each d-value, the case is shown corresponding to the
maximum RaD-value for which a steady and symmetrical
thermal-flow asset was predicted.

As reported by either Moukalled and Acharya [13] or
Shu and Zhu [14], lower d ratios (Fig. 3a, and b) exhibit
a common structure, characterized by the presence of a ver-
tical thermal plume rising from the cylinder top and
impacting the upper side of the cavity with, two big sym-
metrical and counter-rotating vortices dragging upwards
fresh air from the bulk of fluid placed below the cylinder.
The flow radically changes when increasing d up to 0.6
Fig. 3. Isotherms (0.1 6 T*
6 0.9, left) and streamlines (right): (a) d = 0.2, RaD

RaD = 5 � 106. Continuous and dashed lines respectively indicate clockwise an
(Fig. 3c): in place of a single thermal plume, two smaller
lateral plumes are now formed, while the fluid above the
cylinder remains colder. The main circulations are pushed
aside by the birth of two small counter-rotating secondary
cells, which provide heat removal from the cylinder top.
The above observations agree with previous findings in
[13,14].

For d = 0.8, the flow field becomes even more complex
(Fig. 3d). While the interchanges between the upper and
the lower part of the cavity are strongly reduced, complex
three-cell architectures appear in the upper part of the cav-
ity. Besides the twin thermal plumes already observed for
d = 0.6, the thermal boundary layer is perturbed in three
more points: two small symmetrical temperature lumps
are present just below the narrowing lateral gap, and a
short plume reappears at the top of the cylinder. The for-
mer are due to a partial detachment of the main vortices,
forced by the reduced space beside the cylinder at
h = 90�. As a secondary effect, the circulation below the
cylinder is strengthened. The latter effect is linked to the
formation of a tertiary pair of cells above the cylinder,
pushing aside the secondary vortices.

When RaD is increased up to values high enough to
break the steady symmetric patterns, substantial differences
in the behaviour of the four geometrical configurations
appear.
= 5 � 103; (b) d = 0.4, RaD = 105; (c) d = 0.6, RaD = 5 � 105; (d) d = 0.8,
d counterclockwise circulation. (+) point of maximum for streamfunction.
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For d = 0.2, a range of unsteady periodic flows is
encountered. The power spectrum of the heat flux at the
enclosure upper wall, for the UP case RaD = 104, exhibits
a very neat peak at x = 0.667. According to Desrayaud
and Lauriat [16], this behaviour indicates the occurrence
of a Hopf bifurcation. The snapshot of the temperature
field shown in Fig. 4, refers to the flow patterns predicted
at RaD = 105. It should be pointed out that the central
buoyant plume, always present in steady-state regimes for
d = 0.2, still remains well defined, in spite of the more com-
plex character of the flow.

The scenario remains similar for d = 0.4, with the onset
of a periodic regime at a higher RaD-value.

Among the 10 solutions carried out for d = 0.6, transi-
tional characteristics were only found for the two upper
RaD-values. For RaD = 106, the long-term prediction is still
steady-state, but non-symmetric, as shown in Fig. 5. The
transient behaviour of this case was monitored by frame-
by-frame displaying and time series analysis, leading to
the conclusion that the non-symmetric pattern is formed
Fig. 4. Isotherms (0.1 6 T*
6 0.9) for d = 0.2, RaD = 105.

Fig. 5. Isotherms (0.1 6 T*
6 0.9, left) and streamlines (right): d = 0.6, RaD

counterclockwise circulation. (+) points of maximum and minimum for stream
by the progressive degeneration of a symmetric unstable
configuration, through which the solution invariably
passes. This symmetry-breaking pattern is typical of pitch-
fork bifurcations. Such an occurrence is not uncommon in
confined buoyant flows [16,27].

For RaD = 5 � 106, the circulation within the cavity
becomes unsteady, and exhibits a complex periodicity.
Fig. 6 reports time series for the average non-dimensional
heat flux on the two vertical sides of the cavity: the two
quantities are found to oscillate around different time-aver-
aged values. This seems to indicate that this periodic flow
originates from one of the branches of the above pitchfork
bifurcation. In particular, the case shown in Fig. 6 falls on
the same branch of the non-symmetric steady solution in
Fig. 5. An asymptotic time-averaged solution is likely to
lie upon it, as demonstrated by Desrayaud and Lauriat
[16] for an enclosed line source. In that case a pitchfork
branching was found to be followed by a subcritical Hopf
bifurcation.

For none of the Rayleigh numbers examined at d = 0.8
the solution strayed from a symmetric steady-state
configuration.

The issue of flow transition had not been discussed in
previous works [13–15]. However, an estimate of the criti-
cal Ra-value can be inferred from Desrayaud and Lauriat
[16], who detected a supercritical Hopf bifurcation at
RaL = 1.5–1.6 � 106, for a line heat source centred in a
square cavity. For the smallest cylinder size considered
here, d = 0.2, the first Ra-value associated with a periodic
flow corresponds to RaL = 1.25 � 106. Such a value com-
pares very favourably with the stability threshold in [16],
in view of the significant differences in the source size and
the thermal boundary conditions at the enclosure walls.
5.3. Heat transfer results and correlation

Results are restricted to the subcritical region, character-
ized by the occurrence of a long-term steady-state regime.
= 106. Continuous and dashed lines respectively indicate clockwise and
function.



Fig. 6. Time histories of the average non-dimensional heat flux uav the left
and right walls: d = 0.6, RaD = 5 � 106.
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Table 4 reports the 22 � 4 (RaH,d) matrix adopted for
computations, and the related NuD- and NuH-values. The
experiment covers the range of RaH from 10�9 to
2 � 104, therefore encompassing the pseudo-diffusive and
the laminar regions.

Results in Table 4 confirm that pseudo-diffusive regimes
are characterized by a constant value of the Nusselt num-
ber, which is attained asymptotically as RaH tends to zero;
here this is labelled NuH,0.

Fig. 7 shows the distributions of the ratio NuH,h/NuH,h

along the cylinder contour, for selected RaH-values and
Table 4
Average Nusselt number values versus RaH, steady-state predictions

RaH NuDjNuH

d = 0.2
h = 2

d = 0.4
h = 0.75

1 � 10�9 1.1869j2.3737 2.0159j1.51
1 � 10�7 1.1869j2.3737 2.0159j1.51
1 � 10�5 1.1869j2.3737 2.0159j1.51
1 � 10�3 1.1869j2.3737 2.0159j1.51
1 � 10�1 1.1869j2.3737 2.0159j1.51
1 � 100 1.1869j2.3737 2.0159j1.51
1 � 102 1.1869j2.3738 2.0160j1.51
5 � 102 1.1877j2.3755 2.0173j1.51
1 � 102 1.1903j2.3807 2.0212j1.51
2 � 102 1.2007j2.4014 2.0368j1.52
3 � 102 1.2178j2.4357 2.0627j1.54
4 � 102 1.2413j2.4827 2.0978j1.57
1.2 � 103 1.5293j3.0587 2.5065j1.87
2 � 103 1.7724j3.5449 2.8703j2.15
2.85 � 103 1.9575j3.9151 3.1750j2.38
5.3 � 103 2.2971j4.5943 3.7776j2.83
7.75 � 103 2.5154j5.0309 4.1766j3.13
1.02 � 104 2.6795j5.3591 4.4795j3.35
1.265 � 104 2.8122j5.6243 4.7267j3.54
1.51 � 104 2.9238j5.8475 4.9366j3.70
1.755 � 104 3.0202j6.0404 5.1194j3.83
2 � 104 3.1049j6.2099 5.2809j3.96
d-ratios. The plots bring out the correspondence between
the flow structures described in Section 5.2 and the result-
ing heat transfer modes. For the lower d-values (Fig. 7a
and b) NuH,h always exhibits a monotonically decreasing
trend from the cylinder bottom (h = 0) to its top (h = p).
This behaviour is coherent with Fig. 3a, and b, where the
strong lateral vortices are seen to enhance convection in
the lower part of the cylinder, while a progressive thicken-
ing of the boundary layer is observed for increasing h, and
one single stagnation point is present at h = p.

Over a comparable range of RaH, Cesini et al. [12] found
similar trends in their experiments on a heating cylinder in
an almost-square enclosure.

For either d = 0.6, and d = 0.8, the wall heat flux distri-
bution becomes increasingly more irregular for increasing
RaH, as a counterpart of the complexity the thermal and
flow fields take on. Plots in Fig. 7c and d indicate that, even
for the lowest RaH-value shown (2 � 104), the heat flux
oscillates around the pseudo-diffusive value. For higher
RaH-values, a profound dip and a very high peak appear
in the upper part of the cylinder. For d = 0.6 the maximum
always falls at h = p, while for d = 0.8, it progressively
shifts backwards, down to 0.86p, for increasing RaH. As
can be seen in Fig. 3c and d, minima in the NuH ;h=NuH ;h

plots match the presence of thermal plumes detaching from
the cylinder surface, and maxima correspond to regions
where fresh fluid is carried towards the wall by secondary
or tertiary circulation cells.

The averaged values of the Nusselt number in Table 4
form the database used to derive a general heat transfer
correlation covering the whole subcritical range. After
d = 0.6
h = 0.333

d = 0.8
h = 0.125

20 3.4119j1.1373 6.7839j0.8480
20 3.4119j1.1373 6.7839j0.8480
20 3.4119j1.1373 6.7839j0.8480
20 3.4119j1.1373 6.7839j0.8480
20 3.4119j1.1373 6.7839j0.8480
20 3.4119j1.1373 6.7839j0.8480
20 3.4121j1.1374 6.7859j0.8482
29 3.4156j1.1385 6.8330j0.8541
59 3.4265j1.1422 6.9650j0.8706
76 3.4694j1.1565 7.2895j0.9112
70 3.5364j1.1788 7.5652j0.9457
33 3.6181j1.2060 7.7933j0.9742
99 4.2747j1.4249 9.2567j1.1571
27 4.9748j1.6583 10.5374j1.3172
12 5.5949j1.8650 11.5263j1.4408
32 6.7625j2.2542 13.5636j1.6955
25 7.5297j2.5099 14.9101j1.8638
97 8.1042j2.7014 16.0451j2.0056
50 8.5653j2.8551 16.9856j2.1232
24 8.9523j2.9841 17.7987j2.2248
95 9.2872j3.0957 18.5128j2.3141
07 9.5831j3.1944 19.1429j2.3929



Fig. 7. Distributions of the local Nusselt number NuHh, along the cylinder surface for RaH = 2 � 103 � 2 � 104; (a) d = 0.2; (b) d = 0.4; (c) d = 0.6 and (d)
d = 0.8. Data are normalized by pseudo-diffusive values NuH h, in Table 4.

Table 5
Constants in power-law Eq. (27) for each h-value

d h a b

0.2 2 0.6653 0.2258
0.4 0.75 0.3305 0.251
0.6 0.333 0.2474 0.2586
0.8 0.125 0.18 0.2613
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trials, the variables to correlate were chosen to be NuH,
RaH, and h. Note that h = 2, 0.75, 0.333, and 0.125 respec-
tively correspond to d = 0.2, 0.4, 0.6, and 0.8.

Following the procedure outlined by Churchill and
Usagi [28] and Churchill and Chu [9], asymptotic values
for NuH(RaH ? 0) and NuH(RaH ?1) were correlated
for each value of h, and the coefficients of the resulting
equations expressed as a function of h.

The general correlation form [28] is:

Y ¼ ð1þ ZnÞ�n
; ð23Þ

where Y and Z stand for:

Y ¼ NuH RaH ; hð Þ
NuH RaH ! 0; hð Þ ; ð24Þ

Z ¼ NuH RaH !1; hð Þ
NuH RaH ! 0; hð Þ : ð25Þ

As already noted, constant NuH,h-values are obtained
for RaH ? 0. Their power fitting as a function of h is:

NuH ðRaH ! 0; hÞ ¼ 0:54þ 1:178h0:637 ð26Þ

The seven highest RaH-values in Table 4 stood out as the
cases where a steady convective regime is fully established.
They were used to derive the asymptotic correlation for
NuH(RaH ?1). Those data were fitted by a power law
equation for each of the four h-values:

NuH ðRaH !1Þ ¼ aRab
H : ð27Þ

Values obtained for a and b are reported in Table 5.
These were linearly related to h as follows:
aðhÞ ¼0:15þ 0:256h; ð28Þ
bðhÞ ¼0:265� 0:02h: ð29Þ

The dependence of b on h is weak, but was retained in
order to improve the accuracy of the correlation.

Overall, the equation for NuH (RaH ?1,h) turns out to
be

NuH ðRaH !1; hÞ ¼ ð0:15þ 0:256hÞRað0:265�0:02hÞ
H : ð30Þ

The exponent n in Eq. (23) is given the integer value
which minimizes the sum of the squared deviations between
the original data and the predicted values. Here, n = 14 was
found to be the best fitting value.

Substituting Eqs. (26) and (30) in Eq. (23) yields the fol-
lowing general correlation:

NuH ðRaH ; hÞ ¼ 0:54þ 1:178h0:637
� �14
n

þ½ð0:15þ 0:256hÞRað0:265�0:02hÞ
H �14

o 1
14

: ð31Þ

The ranges of validity of Eq. (31) are:

Pr ¼ 0:7;

10�9
6 RaH 6 2� 104;

0:125 6 h 6 2 ð0:2 6 d 6 0:8Þ:

8><
>: ð32Þ



Fig. 8. Heat transfer correlation (31), as compared with available
literature data. Coordinates Y and Z are defined in Eqs. (24) and (25).
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Statistical analysis gives 0.994 for the R-square coeffi-
cient, with a maximum relative error of 7.2% for Eq. (31)
towards the original database.

Eq. (31) is plotted in Fig. 8, using the coordinates Y, Z

defined by Eqs. (24) and (25); two broken lines delimit the
±5% confidence level of the equation, and available litera-
ture data [13–15] are added.

In the literature, the only alternative to Eq. (31) for the
geometry at hand is the correlation proposed by Mouk-
alled and Acharya [13]:

NuD ¼ 0:59Ra0:23
L

d
2

� �0:57

: ð33Þ

Eq. (33), properly re-scaled, is also plotted in Fig. 8 for
the various h-values. It should pointed out that the predic-
tions of Eq. (33) fall within the ±5% confidence range of
Eq. (31) only for the intermediate h-values (h = 0.75 and
0.333), while results for h = 0.125, and h = 2 are underesti-
mated. Furthermore, the exponent 0.23 in Eq. (33) matches
the asymptotic trend given by Eq. (31) only for case
h = 2(d = 0.2).

A complete check of the predictive accuracy of Eq. (31)
is reported in Table 6, where percentage deviations of the
numerical results found in the literature are presented.
All the data fall within a ±10% strip. Steady-state predic-
tions in [13–15] which fall above the proposed stability
Table 6
Deviations of available literature data from equation (31), and NuH prediction

d h RaL RaD RaH e % on NuH (E

Peng et al. [15]

0.2 2 0 0 0 –
0.2 2 1 � 104 8 � 101 6.4 � 102 7.05
0.2 2 5 � 104 4 � 102 3.2 � 102 –
0.2 2 1 � 105 8 � 102 6.4 � 103 �1.46
0.2 2 5 � 105 4 � 103 3.2 � 104 –
0.2 2 1 � 106 8 � 103 6.4 � 104 4.96*

0.2 2 1 � 107 8 � 104 6.4 � 105 –
0.4 0.75 0 0 0 –
0.4 0.75 1 � 104 6.4 � 102 2.7 � 102 0.02
0.4 0.75 5 � 104 3.2 � 102 1.35 � 103 –
0.4 0.75 1 � 105 6.4 � 103 2.7 � 103 6.27
0.4 0.75 5 � 105 3.2 � 104 1.35 � 104 –
0.4 0.75 1 � 106 6.4 � 104 2.7 � 104 4.70*

0.4 0.75 1 � 107 6.4 � 105 2.7 � 105 –
0.6 0.333 0 0 0 –
0.6 0.333 1 � 104 2.16 � 103 8 � 101 �1.65
0.6 0.333 5 � 104 1.08 � 104 4 � 102 –
0.6 0.333 1 � 105 2.16 � 104 8 � 102 1.27
0.6 0.333 5 � 105 1.08 � 105 4 � 103 –
0.6 0.333 1 � 106 2.16 � 105 8 � 103 �3.06
0.6 0.333 1 � 107 2.16 � 106 8 � 104 –

d h RaL RaD RaH NuH [22]
0.2 2 1 � 106 8 � 103 6.4 � 104 7.589
0.4 0.75 1 � 106 6.4 � 104 2.7 � 104 4.178
0.6 0.333 1 � 106 2.16 � 105 8 � 103 2.472

* Predictions in [13–15] falling above the proposed stability threshold.
threshold, RaH ffi 2 � 104, have been starred in Table 6.
It is interesting to remark that even those results are in
good agreement with Eq. (31).

Finally, the cases RaL = 106 and d = 0.2, 0.4, 0.6. in the
literature [13–15], were re-calculated for direct compari-
s for selected RaL-values

q. (31)) Flow region

Shu and Zhu [14] Moukalled and Acharya [13]

– 1.44 PD
7.05 7.45 S
0.82 – S
�1.46 �2.40 S
�0.64 – S

2.57* 2.62* S/UP
– 2.59* UP/UC
– �2.35 PD

0.02 �2.79 S
7.50 – S
5.88 1.62 S
2.47 – S
3.07* �2.09* S

– 3.29* UP/UC
– �1.27 PD
�1.83 �9.87 PD/S
�2.77 – S

1.11 1.08 S
�4.01 – S
�6.16 �2.80 S
– 6.35* NS/UC

NuH [21] NuH [20] NuH (this work)
7.779 7.776 7.769
4.249 4.476 4.243
2.546 2.466 2.532



Fig. 9. NuD–RaD plot of the present prediction, as compared with Churchill and Chu [9] and Cesini et al. [12].
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son. Results are presented in the lower part of Table 6 in
terms of NuH. The agreement with present predictions is
satisfactory and, in particular, an excellent correspondence
emerges with the results by Shu and Zhu [14]. Apart
for some of the data from Moukalled and Acharya [13],
the deviations from Eq. (31) listed in Table 6 are indica-
tive of the accuracy of the correlation itself, which should
be safely stated to be better than ±10% over the whole
range.

In most practical situations, the diameter of the heating
source, D, and the leading temperature difference, DT, are
the design parameters, while the shape and size of the
encapsulation is to be chosen. Data in Table 4, scaled back
to the (RaD,d) format, have been plotted in Fig. 9. They
show that, as long as pseudo-diffusive regimes prevail,
NuD increases with d, for a given RaD-Value. However,
the more room available for fluid circulation, implied by
low-d sizing, promotes heat transfer for increasing RaD.
Churchill’s and Chu [9] equation for the free-stream cylin-
der, also plotted in Fig. 9, fits coherently with the above
observations, showing that the free-stream cylinder
(d ? 0) is the most efficient solution for RaD ?1. How-
ever, the unbounded option penalises heat transfer in the
low-RaD range, in comparison to the enclosed geometries,
and, for d = 0.8 this holds true up to RaD ffi 4 � 104.

A final comparison can be made with the results of
Cesini et al. [12], for an isothermal horizontal cylinder in
a rectangular cavity having isothermal sides and a conduc-
tive ceiling. One of the three cavities considered was almost
square, with d = 0.246. NuD-values were inserted in Fig. 9
for that geometry. It can be seen that they fall between
the present predictions for d = 0.2 and d = 0.4, suggesting
that a change in the cavity boundary conditions does not
substantially affect the heat transfer rate.
6. Concluding remarks

Natural convection heat transfer from a horizontal cyl-
inder centred in an air filled cavity of square cross-section,
was investigated numerically. Four values of the diameter-
to-side ratio were considered, d = 0.2, 0.4, 0.6, 0.8. The last
geometry had never been investigated previously.

A wide range of Rayleigh numbers was explored, also
encompassing the stability limit for long-term steady-
regimes. Substantial differences were observed in the flow
and thermal fields, depending on the aspect ratio and the
Rayleigh number, in the regions of either asymptotically-
steady or time-dependent flows. Pseudo-diffusive, steady-
symmetric, periodic, and more complex time-dependent
flow-regimes were detected. A steady non-symmetric solu-
tion was also encountered for d = 0.6.

The range of stable laminar flows was roughly identified
for each geometry, and the critical value of the Rayleigh
number based on D, RaD, was found to vary within one
order of magnitude when passing from one d-value to the
next. It was possible to reconcile this wide variability by
reassembling the transitional data in terms of RaH, the
Rayleigh number based on the gap-width between the
top of the cylinder and the upper cavity wall. The stability
threshold of steady-state solutions was conservatively fixed
at RaH = 2 � 104, same for all the four geometries. Even if
rough, this estimate is the only one available for this class
of problems, for the time being.

The regions of long-term steady solutions were thor-
oughly explored using the commercial CFD package FLU-
ENT, while enforcing the steady-state formulation and
high-order spatial discretizations.

A correlating equation for the average Nusselt number
on the cylinder, as a function on both the Rayleigh number
and the diameter-to-side ratio, was derived, covering the
whole steady-state region. Extensive comparison with the
available literature data allowed to ascribe the correlation
an accuracy better than ±10%.
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